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A highly efficient numerical approach based on multigrid and preconditioning
methods is developed for modeling 3D steady and time-dependent incompressible
flows. Thek-ω turbulence model is used to estimate the effects of turbulence. The
model equations are solved together with the N-S equations in a strongly coupled
way, and acceleration techniques like the multigrid method are also used for the
turbulence model equations. For unsteady problems, a dual-time stepping procedure
is adopted to satisfy the divergence-free constraint and to obtain a time-accurate so-
lution. To improve the performance of this approach for small physical time steps,
a modification to residual smoothing parameters is proposed. The numerical algo-
rithm and the turbulence model are validated first by calculating unsteady inviscid
flow around an oscillating cylinder, unsteady laminar flow past a circular cylin-
der, and steady high-Reynolds number turbulent flow over a 6 : 1, prolate spheroid.
Then the three-dimensional time-dependent turbulent flow over a spheroid when it
is undergoing a pitch-up maneuver is calculated and compared with experimental
data. c© 1998 Academic Press
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1. INTRODUCTION

Simulation of incompressible turbulent flow around naval vehicle models has made con-
siderable progress in recent years [1–5]. While steady flow analysis could give us some
insights into the flow physics and is commonly used in the prediction of hydrodynamic
performance of underwater vehicles, unsteady flow simulation is of greater significance
naturally because most flows are inherently time dependent. In order to enhance the ma-
neuverability of these vehicles, better understanding of the unsteady flow characteristics is
in great demand.

1 Corresponding author. Current address: ADINA R & D, Inc., 71 Elton Ave., Watertown, MA 02172.
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The major issue in unsteady flow simulation is the computational efficiency, since not only
the spatial resolution, but also the temporal resolution is required. Over the last two decades,
many methods have been developed to solve the incompressible Reynolds-averaged Navier–
Stokes equations. Among those, the pressure-based method and artificial compressibility
method are the most successful approaches. The pressure-based methods represented by
the SIMPLE-family codes developed by Patankaret al. [6] were the dominant approaches
in simulation of incompressible flows and compressible subsonic flows during the 1970s
and 1980s. There are many industrial codes which use this kind of approach. Some of them
have evolved to handle transonic and supersonic flows.

The artificial compressibility methods, proposed by Chorin [7] almost three decades ago,
are only getting attention in recent years, partly because of the success of time-stepping
schemes in transonic flow calculation. In this approach, an artificial time derivative of
pressure is added to the continuity equation, together with a multiplicative variable,β.
With this artificial term, the resultant system of equations is symmetric hyperbolic for the
inviscid terms. Thus, the system is well posed and efficient numerical methods developed
for compressible flows can be used to advance the system in artificial time. Later, Turkel [8]
extended this concept and derived more sophisticated preconditioners than those originally
proposed by Chorin that render the new equation system well-conditioned for numerical
computation. When combined with a multigrid acceleration procedure, this approach has
been proven to be particularly effective. Therefore, it is adopted in the present work. The
computer code used in this investigation is based on the IFLOW solver developed in the
David Taylor Model Basin [1, 4].

For a time-dependent problem, the dual-time stepping technique is used. The physical
time derivative terms are treated as source terms. During each physical time step, the system
of pseudotemporal equations is solved by advancing in artificial time to reach the pseudo-
steady state so that divergence-free constraint on the velocity field is satisfied. Since all the
physical terms are treated fully implicitly, there are no stability limitations on the physical
time step. All the acceleration techniques developed for time-independent calculations can
be used to solve the pseudotemporal equations, such as multigrid, local time stepping, and
residual smoothing. This approach was first developed for compressible flows [9–11] and
was later adopted for unsteady incompressible flows [12, 13].

Another issue is turbulent modeling. It is noted that most computations of turbulent
flows about underwater vehicles employed an algebraic turbulence model. Besides the
implementation difficulty of this kind of model in a 3D complex geometry case, its poor
performance in the prediction of separation makes it very hard to model the high angle
of attack flows. It is widely accepted that the accuracy of modern numerical simulation is
largely limited by the accuracy of turbulent modeling. Encouraged by the results reported
in [14–18, 5], We use Wilcox’s newκ-ω two-equation model in this study.

The present method is first tested by calculating inviscid two-dimensional flow over an
oscillating cylinder and unsteady viscous flow past a circular cylinder. In the first case, since
the analytic solution is available, strict comparison is made. It was found that our unsteady
algorithm is very accurate and very efficient. The mean quantities of second test cases are
found in good agreement with experimental data and computational data obtained by other
authors. The famous K´armán vortex street phenomenon is clearly captured. Those calcula-
tions show that the present method is very efficient and robust, as well as highly accurate.
After the turbulence model is tested for three-dimensional turbulent flows over a 6 : 1, pro-
late spheroid at various angles of attack, the time-dependent flow over the spheroid when
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it is going a 0–30◦ pitch-up is calculated. Computational results were found in favorable
agreement with the available experimental data.

2. GOVERNING EQUATIONS AND THE TURBULENCE MODEL

In this work, the incompressible turbulent flow is simulated by solving the Reynolds-
averaged Navier–Stokes equations and turbulence model equations,
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whereu j is the velocity,p is the pressure,ρ is the constant density,ν is the molecular
kinematic viscosity,k is the turbulent kinetic energy, andω is the specific dissipation rate.
The Reynolds stress tensor (u′
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′
j ) is modeled by
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The closure coefficients are

βk = 9/100, γk = 1, σk = 1/2, (7)

βω = 3/40, γω = 5/9, σω = 1/2. (8)

3. PSEUDO-COMPRESSIBILITY METHODS

The above-described Navier–Stokes equations are solved by using the pseudo-compress-
ibility approach first proposed by Chorin [7] and improved later by Turkel [8] for better
condition numbers. Initially this approach was designed to obtain steady-state solutions of
the incompressible Navier–Stokes equations by directly coupling the pressure and velocities.
Recently, it was also used to solve time-dependent problems [19, 12, 13] by introducing a
dual-time stepping technique. Here, the Turkel-type preconditioning method is developed
for unsteady moving-grid computation.

In dual-time stepping formulation, the conservative form of preconditioned incompress-
ible N–S equations can be written as
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= 0, (9)



            
P1: BKP

January 9, 1998 2:1 APJ/Journal of Computational Physics JCP5859

38 LIU, ZHENG, AND SUNG

where

q =
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wheret is the pseudo-time,t∗ is the physical time,p∗ = p/ρ, p is the pressure,ρ is the
constant density,u, v, andw are the three Cartesian velocity components, (xt∗ , yt∗ , zt∗ ) are
the grid moving velocity. Now the convective velocity is the relative velocity which is equal
to the absolute velocity minus the grid moving velocity.ν is the molecular viscosity,νt is
the eddy viscosity,I 1 is the unit matrix, except its first element is zero,

I 1 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (11)

andP is a preconditioning matrix. Its general form that combines the methods by Chorin,
Turkel, and van Leer can be expressed as

P−1 =


(1 + γ )β−2 γβ−2u γβ−2v γβ−2w

(1 + α + γ )β−2u 1 + γβ−2u2 γβ−2uv γβ−2uw

(1 + α + γ )β−2v γβ−2vu 1 + γβ−2v2 γβ−2vw

(1 + α + γ )β−2w γβ−2wu γβ−2wv 1 + γβ−2w2

 . (12)

In practice, the optimal preconditioning parameters are selected from numerical experiment,

α = 1, γ = 0, β2 = max(|u|2, εβ), εβ = 0.7. (13)

This approach has been used by Rogers and Kwak [19], Belov, Martinelli, and Jameson
[13] in 2D unsteady incompressible flows. Although the simplest preconditioning method
of Chorin was used in their studies, very fast convergences were obtained.

The preconditioning matrixP in (12) is only effective for stationary grids. For moving-
grid cases, the preconditioning matrixP must be modified to account for the grid-moving
velocity. Through a simple analysis of the inviscid governing system, a new preconditioning
matrix for the grid-moving case can be derived as

P−1 =


β−2 0 0 0

β−2(2u − xt∗) 1 0 0
β−2(2v − yt∗) 0 1 0
β−2(2w − zt∗) 0 0 1

 , (14)
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where

β2 = max((u − xt∗)2 + (v − yt∗)2 + (w − zt∗)2, εβ),

εβ = 0.7.

No preconditioning is needed for convection terms of the turbulence model equations
since the wave speeds are already equalized to be the convective velocity, which is also one
of the eigenvalues of the preconditioned Navier–Stokes equations.

The more important issue in solving turbulence model equations is the treatment of source
terms. The source terms of turbulence model equations are usually dominant and stiff near
the wall. A point-implicit technique [5] is used to treat the source terms implicitly. The
implicit matrix can be regarded as a preconditioning way to alleviate the stiffness.

4. NUMERICAL METHODS

The above governing equations are solved by using a semi-discrete method, in which the
spatial terms and temporal terms are discretized separately.

4.1. Discretization Scheme

The flow equations (N–S equations) and the turbulence model equations are discretized
by using different schemes due to the totally different characteristics of their solutions.

In incompressible flows usually there is no discontinuity phenomenon such as shock
waves. High-resolution schemes, like TVD and eigenvalue-based upwind schemes, are not
necessary because those schemes are quite expensive and only make a difference near the
shock waves. Therefore, for the flow equations the regular second-order central difference
scheme is used. Only fourth-order artificial dissipation terms are added to the system (9).
Those terms, in higher order than the numerical scheme, only provide additional dissipation
to suppress numerical spurious oscillations when the grid size is not small enough to render
the physical viscosity effective. Therefore, they will not contaminate the physical solutions
as sometimes the second-order dissipation terms might. Our numerical solutions also show
that the fourth-order artificial dissipation terms do not affect the accuracy.

Since the fourth-order artificial terms are very small and there is no significant difference
between the eigenvalues after preconditioning, it is not worthwhile to use matrix dissipation.
In this work, the maximum spectral radii of matricesPA, PB, PCare used instead of
the matricesA = ∂F/∂q, B = ∂G/∂q, C = ∂ H/∂q, respectively. Since the maximum
eigenvalue of|PA| is smaller than that of|A|, less dissipation is added.

However, for the turbulence model equations a high-order upwind-biased MUSCL
scheme [20] is used. The reason for that is the steep gradients existing in thek, ω field,
especially forω. A typical distribution ofω in the direction normal to the wall is that the
value ofω changes rapidly from about 105 or even higher (depends on the grid resolution)
near the wall to the order of 1 outside the boundary layer. It is very hard to construct dissipa-
tion terms which will stabilize the computation and avoid introducing excessive dissipation
in some regions for a central difference scheme. On the other hand, the high-resolution
scheme is designed to deal with such large gradients. The turbulence model equations have
a very simple wave structure. Therefore, various orders of upwind schemes can be easily
constructed based on the local convective velocities.
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The diffusive terms of a Navier–Stokes equation and the turbulence model equations are
discretized by a compact central difference scheme with second-order accuracy.

4.2. Time-Stepping Method

After being discretized in space, Eq. (9) can be written as

P−1 d

dt
(Vi, j,kqi, j,k) + Ri, j,k(q) = 0, (15)

whereRi, j,k(q) is the total residual,

Ri, j,k = Si, j,k(q) + I 1Ei, j,k(q) = 0, (16)

whereVi, j,k is the volume of cell(i, j, k), Si, j,k(q) is the spatial term which includes the
convection, diffusion, and dissipation terms,Ei, j,k(q) is the real time-dependent term for
unsteady flows, which is discretized by using a second-order accurate implicit backwards
difference formula:

Ei, j,k(q) =
(

1

21t∗

)
[3(Vi, j,kqi, j,k)

n+1 − 2(Vi, j,kqi, j,k)
n + (Vi, j,kqi, j,k)

n−1]. (17)

In this work, a five-stage Runge–Kutta-type scheme is used to advance the solution in
pseudo-time with the implicit calculation of the unsteady term as shown in (17). Since the
pseudo-transient evolution is not of interest, the time stepping scheme can be optimized
for faster convergence. Acceleration techniques like multigrid method, local pseudo-time
stepping and residual averaging are applied following [21, 22].

The preconditioner and the implicit treatment of the real time-dependent terms are imple-
mented by devising a new updating formula for the Runge–Kutta scheme. For example, in
themth stage of Runge–Kutta scheme atnth pseudo-time step, the updating formula reads

P−11qn,(m)

1t (m)
= −(

R
(
qn,(m−1)

) + λI 1
(
qn,(m) − qn,(m−1)

))
, (18)

where

1qn,(m) = qn,(m) − qn, (19)

λ = 31t∗

2
, (20)

1t (m) = Km1t, (21)

where1t∗ is the physical time step,1t is the local pseudo-time step, andKm is the Runge–
Kutta coefficient of themth stage. To find the new valueqn,(m), an intermediate step is
introduced to find the intermediate valueqn,(m′) which is obtained from

P−1

(
qn,(m′) − qn

)
1t (m)

= −R
(
qn,(m−1)

)
, (22)

as usually done in the normal update without real time-dependent terms.
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By subtracting (22) from (18), we have

P−1

(
qn,(m) − qn,(m′)

)
1t (m)

= −λI 1
(
qn,(m) − qn,(m−1)

)
which can be rearranged as

2−1qn,(m) = P−1qn,(m′) + 1t (m)λI 1qn,(m−1), (23)

where

2−1 = {
P−1 + 1t (m)λI 1

}
. (24)

If Turkel’s preconditioner is used,

P−1 =


β−2 0 0 0

(1 + α)β−2u 1 0 0
(1 + α)β−2v 0 1 0
(1 + α)β−2w 0 0 1


= P−1(α, β2), (25)

then

2−1 =


β−2 0 0 0

(1 + α)β−2u 1 + 1t (m)λ 0 0
(1 + α)β−2v 0 1+ 1t (m)λ 0
(1 + α)β−2w 0 0 1+ 1t (m)λ


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1 + 1t (m)λ
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P−1

(
α, β2

(
1 + 1t (m)λ
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, (26)

where P−1(a, b) denotes the matrix withα = a, andβ2 = b in (25). With the above
relations, Eq. (23) can be written as

qn,(m) = 2P−1qn,(m′) + 21t (m)λI 1qn,(m−1)

= 1(
1 + 1t (m)λ

) P
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) P
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=
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1 0 0 0
0 1

(1+1t (m)λ)
0 0

0 0 1
(1+1t (m)λ)

0

0 0 0 1
(1+1t (m)λ)

 qn,(m′)

+ 1t (m)λ(
1 + 1t (m)λ

)


β−2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 qn,(m−1).
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For turbulent flow computation, the flow and the turbulence equations are solved as one
system. The above-described techniques are applied equally to the turbulence equations as
well as to the flow equations.

4.3. Modification of the Scheme for Small Physical Time Steps

It is worthwhile to point out, however, when the physical time step is very small (even
smaller than the pseudo-time step), the implicit treatment of time-dependent terms will
yield very slow convergence. Jameson suggested [9] those terms should be only treated
implicitly when theCFL number based on physical time step is greater than 200. In this
work, we found that this problem can be removed by devising a new residual smoothing
parameter formula in which the small physical time step can be accounted for. For instance,
the smoothing parameter inξ direction can be calculated,

εξ = 1

4
max

(
0,

(
CFL

CFL∗
λξ

(λξ + λη + λζ )

)2

− 1

)
, (27)

whereCFL∗ is the maximum stableCFL number of the basic explicit scheme without
smoothing,λξ , λη, λζ are the maximum eigenvalues in theξ, η, ζ directions, respectively.

The efficiency problem can be solved by setting theCFL number in the above equation,
not theCFL number of the pseudo-time step as people usually do, but

CFL = min

(
CFL1t ,

1

4
CFL1t∗

)
, (28)

whereCFL1t is theCFL number based on the pseudo-time step1t, CFL1t∗ is theCFL
number based on the physical time step1t∗.

By using the formula (28), uniformly fast convergence can be achieved throughout a
wide range of physical time steps.

5. BOUNDARY CONDITIONS

The boundary types encountered in this work are classified as solid wall, symmetrical
plane, periodical face, singular line, block interface if multiblock is used, and far field. For
viscous flow, a nonslip condition is imposed on the solid wall boundary by setting the flow
velocity equal to that of the body, and the zero pressure gradient normal to the surface
is specified to determine the pressure on the wall. For inviscid flow, the normal velocity
component is set to zero; the only contribution to the conservation law for near wall cell is
the pressure on the wall, which can be obtained from the normal momentum equation.

Since ghost cells are introduced to store the variable values and derivatives across the
boundary, the boundary conditions for symmetrical, periodical, and block interface are
easily accomplished by assigning the ghost cell with the values of corresponding cells.
Since there is no flux across a singular line, the boundary conditions for a singular line are
obtained through extrapolation, combined with partial averaging.

As has been realized by many researchers, the treatment of far field boundary conditions
can have a great impact on the convergence of the solution. For unsteady problems, the
improper treatment of far field boundary conditions may severely deteriorate convergence
in pseudo-time stepping.
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In this work, approximate nonreflecting boundary conditions based on a linearized charac-
teristics approach are constructed to improve the convergence rate. The linearized character-
istic problem is solved along the direction normal to the outer boundary of the computational
domain. The program implementation can be summarized as follows.

Let qn denote the velocity component in the directionn, the outer normal vector of the
far field boundary, and letqT indicate the tangential components. The boundary conditions
for far field can be written as

pb = λ3 pf − λ4 pe + λ3λ4(qn f − qne)

λ3 − λ4

qnb = pe − pf + λ3qne − λ4qn f

λ3 − λ4

(qT )b =
(

1 − (pb − pe)

β2

)
(qT )e, if qnb > 0,

(qT )b =
(

1 − (pb − pf )

β2

)
(qT ) f , if qnb ≤ 0,

whereλ1 = λ2 = (q̃n − q̃ng), λ3 = −λ4 = β for the improved Turkel preconditioning
method.q̃n andq̃ng are averaged normal velocity components of absolute velocity and grid
moving speed, respectively.

6. COMPUTATIONAL RESULTS

Conveniently, unsteady flows can be categorized into three groups: (1) forced, (2) self-
excited, and (3) the combination of both. The flow in the first category is commonly found
in unsteady body motions or boundary movements, such as in submarine flows when un-
dergoing a maneuver, rotor-type flows, and flows with surface-controlling. The second
category refers to the conditions under which the unsteadiness arises from flow separa-
tion and the associated vortex shedding. The flow in the last category is common, but
obviously the least information is available. However, from the point of view of numeri-
cal simulation, if one can deal with the first two categories, there is no fundamental ob-
stacle preventing the last category, even though the physics of such flow is much more
complicated.

In this work, two test cases in the first two categories are carried out. Then we attempt
to calculate the unsteady turbulent flow over a 6 : 1, prolate spheroid when it undergoes
pitch-up maneuvering.

6.1. Oscillating Circular Cylinder

The first test case considered for unsteady flow is the incompressible inviscid flow over
a sinusoidally oscillating circular cylinder. This test case is in the first category as defined
above. As pointed out by Belov [13], this case is believed to be a severe test for numerical
computations since an analytic solution is available and no physical dissipation is present.
Therefore, it provides a strict test for both artificial dissipation introduced by the numerical
algorithm and accuracy of discretization for the governing equations, as well as for grid
motion.
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In this case, the diameter of the cylinder and the frequency of the force oscillation are
chosen to be a unit. The coordinate of the cylinder center is set to

xc(t) = a · sin

(
2π t − 1

2
π

)
, (29)

where the motion amplitudea is equal to 0.1. The fluid velocity at infinity is assumed to be
zero, and the pressure at infinityp∞ is assumed to be a constant of 1. The exact solution for
the incompressible inviscid flow over a moving cylinder can be found in [23]. The surface
pressure distribution and drag coefficient in this case reduce to

ps(θ, t, r ) = p∞ + u2
c(t)

(
2 cos2(θ) − 1

3

)
+ 1

2

duc(t)

dt
cos(θ), (30)

Cd(t) = 2aπ2 sin

(
2π t − 1

2
π

)
, (31)

wherer is the distance to the center of the cylinder,θ is the angle measured clockwise from
the direction of thex-axis, anduc(t) = dxc(t)/dt.

A grid of 64× 32 is used in this computation. The physical time step is set to a constant
0.025. Since the analytic solution is available, one can use the exact solution as the initial
data to start the unsteady process. However, we found the initial status is not important
to the solution of this periodic movement. Instead, a steady solution (by setting time-
dependent terms to be zero) is used to start the oscillating process. As shown in Fig. 1,
except for the overshooting in the first two steps, the solution quickly converges to the
exact solution after a few physical time steps. During each physical time step, less than
50 V(1,0) multigrid cycles or less than 15 W(1,0) multigrid cycles are needed to reduce
the residual of continuity equation to below 10−4. The time-evolution of drag coefficient
and the body pressure coefficient almost coincide with the analytic solution as shown in
Figs. 1 and 2. The computational results fully demonstrate the accuracy and efficiency of
our time-dependent solution algorithm.

FIG. 1. Drag coefficient evolution. Inviscid flow over an oscillating cylinder, 64× 32 grid.
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FIG. 2. Pressure coefficient. Inviscid flow over an oscillating cylinder, 64× 32 grid.

6.2. Vortex Shedding from a Circular Cylinder

The second test case for unsteady flow calculations is the viscous flow passing a circular
cylinder, which is the most thoroughly investigated unsteady flow. When the Reynolds
number is based on the free-stream velocity and the cylinder diameter is less than 200,
the flow will undergo separations but still maintain in laminar stage. The vortices induced
by separation are then shed from upper and lower surfaces alternatively and, thus, form
the famous K´armán vortex street phenomenon. Three cases with Reynolds number Re=
100, 150, 200 are carried out. The computational results are compared with the numerical
results of others and experimental data whenever available.

The physical time step is set to be 0.125. It is about 40–50 steps for each period of
vortex shedding, depending on the Reynolds number. The computation starts by rotating the
cylinder about its center for a few steps and then stopping, in order to speed up the transition
to the limiting cycle and save CPU time. The initial motion affects only the onset time of
the asymmetric vortex shedding, but not the characteristics of the limiting cycle itself [13].

Grid refinement study is performed only for the Re= 150 case as shown in Table 1. It
can be seen that the results on coarse grids are very close to the results on the very fine grid
256× 256. We can expect the solution on the grid of 256× 256 to be grid independent.
Computation shows that the convergence becomes a little bit slower as the Reynolds number
becomes smaller. But generally, about 100 V(1,0) cycles or 20 W(1,0) cycles with seven
levels of multigrid can reduce the maximum residual of continuity equation to below 10−6

TABLE 1

Mesh Refinement Results, Re = 150

4th-order
Grid dissipation St Cd Cl

64× 64 0.01 0.182 1.288± 0.018 ±0.432
96× 64 0.01 0.182 1.301± 0.024 ±0.490
96× 96 0.035 0.182 1.305± 0.024 ±0.495
96× 96 0.00001 0.182 1.308± 0.025 ±0.471
96× 128 0.01 0.182 1.309± 0.025 ±0.486

256× 256 0.01 0.182 1.334± 0.030 ±0.530
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FIG. 3. Pressure, lift, and drag coefficient evolution, Re= 150, grid 256× 256: Cal. St= 0.182, Cd= 1.33±
0.03, Cl= 0 ± 0.53, Exp. St= 0.182(Roshko), 0.183(Williamson), 0.176(Hammache & Gharib).

for each time step. The CPU time of 100 V(1,0) multigrid cycles is found to be less than that
of 20 W-cycles on seven levels of grid because the length of vectorization on the coarse grid
becomes significantly shorter. The acceleration gains from many iterations on coarse grids
in the W-cycle are actually not worthwhile because of the penalty from vectorization, even
though the index-link is commonly used in our code to maximize the vectorization length.

Figure 3 shows the time-evolution of drag and lift coefficients and the base-pressure
coefficient at 180◦ from the front stagnation point. The only available experimental data
for this case are Strouhal numbers (vortex shedding frequency) and the mean base-pressure
coefficient. They are either listed or plotted in Fig. 3. The calculated Strouhal numbers,
drag, and lift coefficients are listed under the plot for comparison. We found the numerical
results are in excellent agreement with the experimental data.

It is interesting to note in Fig. 3 that the oscillation frequency of the base pressure appears
to be twice that of the vortex shedding frequency. But an enlarged examination of the oscil-
lation cycle reveals that the two adjacent cycles are not exactly repeated, as shown in Fig. 4.
Therefore, the true frequency of pressure oscillation is still the frequency of vortex shedding.

In Fig. 5, the computed time-evolution of base-pressure coefficient, drag, and lift coeffi-
cients are shown for flow with Re= 100. Again, the calculated Strouhal number and base
pressure are found in excellent agreement with the experimental data.

More results are shown for the case of Re= 200. First, in Fig. 6, the time-evolution of
base-pressure coefficient, drag, and lift coefficients are presented. The computed Strouhal
number, mean drag coefficient, and base-pressure coefficient are found in incredibly good
agreement with the measured data. The instantaneous streamlines computed at the final
stage in our computation is plotted in Fig. 7. Note that they are not particle tracing lines,
but just streamlines at one instant moment. Figure 8 shows the contours of vorticities. It
basically outlines the K´armán vortex street phenomenon.

Since there have been quite a lot of people who investigated the case of Re= 200, we
compile all the results as collected by Belov [13] and Rogers [19] in Table 2. The numerical
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FIG. 4. Base pressure coefficient evolution, Re= 150, grid 256× 256.

results are listed on the top of the experimental data. By comparing our results with others,
it seems the present results are the closest to the experimental data. A plausible explanation
for that may be the fact that use of the preconditioning method in our algorithm results in
less artificial dissipation required for a stable and efficient calculation.

6.3. Steady and Unsteady Turbulent Flow

After testing the present methods for inviscid and laminar flow simulation, we proceed
to high Reynolds number turbulent flow over a 6 : 1, prolate spheroid which has been
thoroughly investigated by Simpson and his co-workers in their experimental work [24–27].
First, the steady flow with incidence up to 30◦ was calculated. The numerical results are
found in excellent agreement with experimental data. Then the unsteady flow test case
described in [27] was calculated and compared with experimental measurements. Although

TABLE 2

Comparison of Results for Unsteady Flow over a Cylinder, Re = 200

Reference Cl Cd St BaseCp

Present ±0.69 1.31± 0.049 0.192 −0.956
Belovet al. [13] ±0.64 1.19± 0.042 0.193 −0.936
Rogerset al. [19] ±0.65 1.23± 0.05 0.185
Miyakeet al. [13] ±0.67 1.34± 0.043 0.196
Rosenfieldet al. [19] ±0.69 1.46± 0.05 0.211
Lecointeet al. [13] ±0.5 1.58± 0.0035 0.194
Lin et al. [13] 1.17
Henderson [13] 0.197 −1.

Kovaznay (Exp.) [19] 0.19
Roshko (Exp.) [19] 0.19
Williamson (Exp.) [13] 0.197 −0.96
Wille (Exp.) [19] 1.3
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FIG. 5. Pressure, lift, and drag coefficient evolution, Re= 100: Cal. St= 0.165, Cd= 1.350± 0.012,
Cl = 0± 0.339, Exp. St= 0.164(Roshko), 0.166(Williamson), 0.156(Hammache & Gharib).

FIG. 6. Pressure, lift, and drag coefficient evolution, Re= 200: Cal. St= 0.192, Cl= 0± 0.69, Cd = 1.31±
0.049, Exp. St= 0.190(Roshko), Cd= 1.3(Wille), Exp. St= 0.19(Kovasznay).

FIG. 7. Instantaneous streamlines colored by velocity magnitude. Unsteady viscous flow past a circular
cylinder. Re= 200, 256× 256 grid.
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FIG. 8. Vorticity magnitude contours. Unsteady viscous flow past a circular cylinder. Re= 200, 256× 256
grid.

the idea of simulation of unsteady turbulent flow by using Reynolds averaged Navier–Stokes
equation and turbulence model is debatable, it is regarded as the only feasible approach for
large scale engineering problems with presently available computer resources.

Since the geometrical model is axisymmetric, only half the domain of flow field is actually
simulated. For the steady flow cases, four different sizes of grid, 48×24×32, 64×32×48,
96×48×64, and 128×64×96 (axial by circumferential and by radial direction), are used
in the study to make sure the grid resolution is enough for the flow field and for the solution
of turbulence model equations. Figures 9–16 show the results for the case of Reynolds
number of 4.2 × 106 and angle of attack of 10◦. The skin friction distribution along the
circumferential direction at different axial locations are accurately predicted on the grid of
64×32×48 as shown in Fig. 9, although an even better prediction is obtained on the finest
grid as shown in Fig. 10. As pointed out by Wetzel [27], the wall skin friction minimum
qualitatively corresponds to the separation location in spheroid cases. Therefore the accurate
prediction of skin friction implies the separation locations are also accurately predicted by
k-ω model in this case. The axial, circumferential, and radial velocity component profiles at
different axial sections (x/L) and different circumferential locations (φ) are plotted against
experimental data in Figs. 11–14. It can be found that there is very little difference between
the results obtained on the four different grids, and they are almost equally accurate. The
same conclusion can be drawn for the surface pressure coefficient distribution as shown
in Fig. 15. However, from Fig. 16, it becomes apparent that the mesh resolution of grid
48 × 24 × 32 is not fine enough to predict Reynolds stresses, even though its result is
much closer to the experimental data. The over-prediction of Reynolds stress in the outer

FIG. 9. Skin coefficients obtained on a grid of 64× 32× 48.
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FIG. 10. Skin coefficients obtained on grid of 128× 64× 96.

FIG. 11. Velocity profiles atx/L = 0.4, φ = 90◦.

FIG. 12. Velocity profiles atx/L = 0.4, φ = 180◦.
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FIG. 13. Velocity profiles atx/L = 0.6, φ = 100◦.

FIG. 14. Velocity profiles atx/L = 0.6, φ = 180◦.

FIG. 15. Pressure coefficients distribution Re= 4.2 × 106, angle of attackα = 10◦.



            
P1: BKP

January 9, 1998 2:1 APJ/Journal of Computational Physics JCP5859

52 LIU, ZHENG, AND SUNG

FIG. 16. Reynolds stress distribution Re= 4.2 × 106, angle of attackα = 10◦.

boundary layer region is a known problem for thek-ω model. With the results of three finest
grids falling so close to each other, we can safely conclude that the grid of 64× 32× 48
provides sufficient resolution for engineering calculation in this case.

Figures 17 and 18 show the calculated normal force and pitch moment at different angles
of attack and the experimental results. Computational results match the measurements
excellently, except in the high angle of attack regime, where the normal force is noticeably
underpredicted and the pitch moment is slightly overpredicted. The discrepancy may be
caused by the turbulent modeling or may simply be due to asymmetrical vortex shedding
at the high angle of attack.

Most calculations are done in 300 multigrid cycles with reducing the residuals by 5 orders
of magnitude.

The last test case is the unsteady flow over the same spheroid model when it is doing a
pitch-up movement around its geometrical center from 0◦ to 30◦ at a constant angular rate
of 0.015π .

Only two grids, 48× 24× 32 and 64× 32× 48, were used in this case because of the
heavy CPU time usage required for time-dependent calculation. The total CPU time on a

FIG. 17. Normal force vs angle of attack; 6 : 1, prolate spheroid, Re= 4.2 × 106.
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FIG. 18. Pitch moment vs angle of attack; 6 : 1, prolate spheroid, Re = 4.2 × 106.

Cray-C90 with use of a single processor is about 4 h if theresidual is required down to 10−6

at each physical time step on the grid of 64× 32× 48. Fortunately, it is not necessary to
reduce the residual so low at each time step, and from the calculation results of steady flow,
we think the grid of 64× 32× 48 is fine enough.

Figures 19 and 20 show the variation of pressure coefficient distribution at two axial
sections when the pitch-up motion reaches different angles. Compared with the experimental
data, the calculation slightly underpredicts the low and high pressure peaks in the high angle
of attack regime. Time evolutions of the body normal force and pitch moment are plotted
in Figs. 21 and 22, respectively. Results obtained on two grids and with different physical

FIG. 19. Pressure distribution atx = 0.11. Re= 4.2 × 106, unsteady flow during a pitch-up.
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FIG. 20. Pressure distribution atx = 0.90. Re= 4.2 × 106, unsteady flow during a pitch-up.

FIG. 21. Time evolution of normal force during a pitch-up; Re= 4.2 × 106.
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FIG. 22. Time evolution of pitch moment during a pitch-up; Re= 4.2 × 106.

time steps are compared with the experimental data. It seems to the authors that more
careful work is needed on both numerical and experimental sides. The big oscillation of
experimental data may indicate that the designed pitch-up motion is not achieved in actual
implementation.

7. CONCLUDING REMARKS

A very efficient and accurate numerical approach based on multigrid and precondi-
tioning methods is developed in this work for predicting three-dimensional steady and
time-dependent turbulent flows. The following conclusions are drawn from our computa-
tions.

The preconditioning method not only improves computational efficiency, but also numer-
ical accuracy since less artificial dissipation is required for a stable and efficient calculation.

High-order upwind-biased schemes with limiters are a good choice for discretization
of turbulence model equations. Because of the simple wave structure of the model equa-
tions, the upwind scheme only requires slightly more computational effort than the central
difference scheme. It has been found robust and accurate.

The dual-time stepping procedure for time-dependent problems has the advantage that the
time step is determined solely by the physical time scale of the problem. The performance
of this approach for small physical time steps is greatly improved through a modification
to the residual smoothing parameters.

The numerical results are found in excellent agreement with experimental data for 2D
unsteady laminar flows and 3D steady turbulent flows. However, the test case of 3D un-
steady turbulent flow shows that further investigation is needed from both experimental and
numerical sides for more rigorous comparison.
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